# **REACTIVITY OF SODIUM TRIPHOSPHATE CRYSTAL HYDRATES**

E. A. Prodan, V. A. Sotnikova-Yuzhik and L. I. Petrovskaya

Institute of General and Inorganic Chemistry of the Belorussian Academy of Sciences, Minsk Russia

## Abstract

Kinetics of thermal decomposition of single crystals and polycrystalline samples of  $Na_5P_3O_{10}\cdot 6D_2O$  and  $Na_5P_3O_{10}\cdot 6H_2O$ , interaction of fine-crystalline  $Na_5P_3O_{10}\cdot 1.6H_2O$  with humid gaseous ammonia were studied using TLC, XRDA, IRS, TG, DTA, DSK.

Keywords: kinetics, sodium triphosphate crystal hydrates

### Introduction

Reactivity of triphosphate compounds in regard to different reactions is not the same, it may vary depending on the type of reaction under investigation, state of division of a solid and other factors [1]. In the present work results of kinetic investigation of two types of reactions were considered: thermal transformations (D-H isotope exchange, D<sub>2</sub>O loss, H<sub>2</sub>O loss, dehydration localization form on crystal faces, Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>(II)  $\rightarrow$  Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>(I) transition etc.) of single crystals and polycrystalline samples of Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>·6D<sub>2</sub>O and Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>·6H<sub>2</sub>O under isothermal and non-isothermal conditions; isothermal interaction of finecrystalline Na<sub>3</sub>H<sub>2</sub>P<sub>3</sub>O<sub>10</sub>·1.6H<sub>2</sub>O with humid gaseous ammonia.

### **Experimental**

Single crystals  $(2.0\times0.5\times0.1 \text{ mm})$  and polycrystalline samples of Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>· 6D<sub>2</sub>O (average crystal size d = 0.1-0.6 mm) were synthesized using slow evaporation and other methods of supersaturation of D<sub>2</sub>O solutions of low temperature form Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>(II) [2]. Non-deuterated Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>·6H<sub>2</sub>O with crystal sizes close to those of Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>·6D<sub>2</sub>O were synthesized under the same conditions excluding D-reagents. Fine-crystalline Na<sub>3</sub>H<sub>2</sub>P<sub>3</sub>O<sub>10</sub>·1.6H<sub>2</sub>O was precipitated from acidified Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>·6H<sub>2</sub>O solutions using organic precipitating agents [3]. Methods of quantitative thin-layer chromatography (TLC), X-ray diffraction analysis (XRDA) and infrared spectroscopy (IR) were employed to control anion composition, phase composition and D-H isotope exchange degree of samples respectively. When studying ammonization kinetics of fine-crystalline Na<sub>3</sub>H<sub>2</sub>P<sub>3</sub>O<sub>10</sub>·1.6H<sub>2</sub>O water solutions of NH<sub>4</sub>OH (concentration c = 18% and 24%) were used as a sourse of humid gaseous ammonia [4].

#### **Results and discussion**

Microscopic investigation of well-developed (001) facets of partially dehydrated Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>·6D<sub>2</sub>O and Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>·6H<sub>2</sub>O single crystals (mass lose  $\Delta m < 2 \mod D_2$ O and  $\Delta m < 2 \mod H_2$ O) shows, that D- and H-hexahydrates do not differ significantly in regard to typical localization form. In both cases the reaction starts on shot crystal edges and advances along b-axis forming characteristic cluster-like dehydration figures. Polycrystalline D- and H- hexahydrates manifest similar behaviour in dehydration kinetic experiments (Fig. 1). The shape of kinetic curves is almost the same excepting more strongly pronounced self-acceleration in case of H-hexahydrate. According to IRS data, Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>·6D<sub>2</sub>O single crystals owing to smaller geometrical surface lose D-isotope more slowly when stored in air than polycrystalline samples.

The isotope substitution effect becomes noticeable when samples screened into equal size grades are used (d = 0.1-0.3 mm): the first endoeffect of initial reversible stage of dehydration is registered on DTA curves at  $t = 94^{\circ}$ C (Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>·6D<sub>2</sub>O) and  $t = 80^{\circ}$ C (Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>·6H<sub>2</sub>O); following endoeffects of irreversible dehydration stages differs from each other to a smaller degree. H-D isotope substitution influences indirectly the Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>(II)  $\rightarrow$  Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>(I) transition which is registered on DSC curves as a single endoeffect ( $t = 574^{\circ}$ C, Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>·6D<sub>2</sub>O) or splitted endoeffect ( $t = 521^{\circ}$ C and  $t = 556^{\circ}$ C, Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>· 6H<sub>2</sub>O).

Interaction of fine-crystalline Na<sub>3</sub>H<sub>2</sub>P<sub>3</sub>O<sub>10</sub>·1.6H<sub>2</sub>O with humid gaseous ammonia proceeds in two stages

Na<sub>3</sub>H<sub>2</sub>P<sub>3</sub>O<sub>10</sub>·1.6H<sub>2</sub>O (cryst.) 
$$\frac{+NH_3, + H_2O (vapour)}{t = 20^{\circ}C, \tau = 2-4 h}$$

 $Na_3(NH_4)HP_3O_{10}\cdot 3H_2O$  (cryst.)

and

Na<sub>3</sub>(NH<sub>4</sub>)HP<sub>3</sub>O<sub>10</sub>·3H<sub>2</sub>O (cryst.) 
$$\frac{+NH_3, + H_2O (vapour)}{t = 20^{\circ}C, \tau = 24-48 \text{ h}}$$

 $Na_3(NH_4)_2P_3O_{10}.5H_2O$  (cryst.)

At  $t = 7^{\circ}$ C the interaction time for the first and the second stage is equal to 20–25 h and 80–120 h respectively. Increasing of interaction time is not recommended due beginning of liquefaction of the sample on final stages of ammonization. Keeping of Na<sub>3</sub>(NH<sub>4</sub>)<sub>2</sub>P<sub>3</sub>O<sub>10</sub>·5H<sub>2</sub>O crystal hydrate in dry atmosphere leds to its quantitative conversion into new Na<sub>3</sub>(NH<sub>4</sub>)<sub>2</sub>P<sub>3</sub>O<sub>10</sub>·3H<sub>2</sub>O crystalline phase.



Fig. 1 Kinetics of thermal decomposition of  $Na_5P_3O_{10} \cdot 6D_2O$  (a) and  $Na_5P_3O_{10} \cdot 6H_2O$  (b)

#### References

- 1 E. A. Prodan, Reactivity of Solids, 8 (1990) 299.
- 2 E. A. Prodan, V. M. Galogaza, V. A. Sotnikova-Yuzhik and D. U. Scala, Zhurn. Neorgan. Khim., 35 (1990) 1369.
- 3 E. A. Prodan, V. A. Sotnikova-Yuzhik, L. I. Petrovskaya and V. M. Galogaza, J. Serb. Chem. Soc. 53 (1988) 511.
- 4 E. A. Prodan and L. I. Petrovskaya, Vestsi Akad. Navuk BSSR. Ser. Khim. Navuk, 6 (1989) 33.

**Zusammenfassung** — Mittels TLC, XRDA, IRS, TG, DTA und DSK wurde die Kinetik der thermischen Zersetzung von Einkristallen und polykristallinen Proben von  $Na_5P_3O_{10}$ · $6D_2O$  und  $Na_5P_3O_{10}$ · $6H_2O$  sowie der Wechselwirkung von feinkristallinem  $Na_5P_3O_{10}$ · $1.6H_2O$  mit feuchtem gasförmigem Ammoniak untersucht.